MINIMIZATION OF BLAST FURNACE FUEL RATE BY OPTIMIZING BURDEN AND GAS DISTRIBUTIONS

Chenn Q. Zhou Professor of Mechanical Engineering Purdue University Calumet Hammond, IN 46321 qzhou@calumet.purdue.edu

PROJECT OVERVIEW

OWERING

1233.00

MORE POWERFUL

- > Participants:
 - American Iron and Steel Institute
 - ArcelorMittal Steel
 - Dofasco
 - Severstal
 - Purdue University Calumet
 - Stelco Inc.
 - US Steel
 - Union Gas
- Duration: 3 Years

PUC CFD LAB

- Start Date: October 2007
- Funding Agent: DOE/AISI

PROJECT GOALS

- To help the steel industry in using advanced technology to
 - Increase pulverized coal injection rate and fuel efficiency
 - Reduce carbon emissions
 - Optimize BF efficiency

PUC CFD LAB

To lay a solid foundation for developing a comprehensive model for the whole blast furnace to optimize the BF operation

OWERING

YORE POWERFUL

> To enhance education program at PUC

BACKGROUND

DWERING

- The fuel economy of the blast furnace process is directly coupled to the gas and burden distributions.
- ➤ The gas distribution, i.e., the effective contact between the gaseous reductant and the iron ores, strongly influences both the thermal and chemical phenomena in the lumpy zone of the furnace.
- The gas distribution also affects the pressure loss as well as productivity and smoothness of operation
- The gas distribution is controlled mainly by manipulating the distribution of the burden and tuyere operation.
- The proper gas and burden distributions are keys to realizing the high rate PCI and high fuel efficiency.

PUC CFD LAB

YORE POWERFUL

PROJECT OBJECTIVES

- To develop a state-of-the-art 3-D CFD model for simulating the gas distribution inside a blast furnace at given burden conditions, burden distributions and blast parameters
- To conduct measurements of top temperature and gas composition distributions as well as validations of the CFD model
- To optimize the burden and gas distribution for maximizing gas utilization with proper furnace permeability for given burden materials, productivities, and blast furnaces
- > To optimize the burden and gas distributions for high fuel injection rate and low coke rate with the best fuel efficiency for given burden materials, productivities, and blast furnaces

PROJECT TASKS

- > Task 1: Development of 3-D Computer Simulation
 - Subtask 1.1 Simulation of Gas Distributions
 - Subtask 1.2 Simulation of Melting and Gasification
 - Heat transfer sub-model
 - Cohesive zone sub-model
 - Sub-models for the chemical reactions
 - Coal and coke combustion

PUC CFD LAB

Subtask 1.3 Complete Simulation of PCI and upper part of a blast furnace

OWEDING

YORE POWERFU

PROJECT TASKS

- Task 2: Measurements of Top Temperature and Gas Composition Distributions and Validations of CFD Model
 - Subtask 1.1 Validation of CFD sub models
 - Subtask 1.2 Validation of entire CFD model

PROJECT TASKS

> Task 3: Parametric Studies and Optimization

- Subtask 3.1 Optimization of the burden and gas distribution to maximize gas utilization
- Subtask 3.2 Optimization of the burden distribution and gas distribution for high fuel injection rate and low coke rate with the best fuel efficiency
- Task 4: Technology Transfer
- > Task 5: Project Management and Reporting

PARAMETRIC STUDIES

- Burden material
- Charging pattern
- Layer structures
- > Thickness ratio
- Productivity
- > Furnace permeability,
- > Furnace geometry

INDUSTRY INVOLVEMENT

> To provide technical know-how

PUC CFD LAB

- To make necessary measurements on blast furnaces and provide measured date for CFD simulations
- To provide geometrical and operating conditions for CFD simulations
- To participate in the commercialization of the CFD software
- > To review the project progress quarterly and to evaluate technical contents every six month.
- One of the industrial collaborators, Dr. Frank Huang at ArcelorMittal Steel, will serve as the co-principal investigator to oversee the project

OWERING

Year		I												11									111													
Month s	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3	3 4	3 5	3 6
Task 1																																				
1.1																																				
1.2																																				
1.2a																																				
1.2b																																				
12.c																																				
1.2d																																				
1.3																																				
Task 2																																				
2.1																																				
2.2																																				
Task 3																																				
3.1																															1					
3.2																																				
Task 4 D	77	2	6	γ_{i}			\prod			$\overline{\mathbf{x}}$						90	2	13	a.	T	2						1	11	2	Y						
)	C	Π	Ľ	Ţ		La		ワ										6	J.E	37	7	ßC	ti.		1-5	1-1	1				- Marine	2		

THANK YOU

